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Abstract. Bounds to overlap integrals are obtained by an operator inequality technique. 
The formulation involves a set of linear inequalities with several overlap integrals as 
unknowns. The ‘solution’ of this set of inequalities leads to bound expressions which 
complement those of Weinberger and of &hen and Feldmann. 

1. Introduction 

Operator inequalities have been used extensively to derive bounds to quantum 
mechanical properties. In many cases, they provide a more convenient framework than 
do other procedures, such as determinantal inequalities (for a review, see Weinhold 
1972). The starting point is as follows. Given two operators, A and B, the inequality 

A s B  (1) 

(2) 

means that, for any function 4 in the common domain of the operators A and B, 

(4 IA 14) 2 (4 IB 14). 
For such a pair of operators, it has been shown (Uwdin 1965) that the ordered 
eigenvalues of A(ao, al ,  a2,. . .) and the ordered eigenvalues of B(bo, b l ,  b 2 , .  . .) 
satisfy: 

ao a bo, ai bi,  a2 3 b2, . . . .  (3) 

A - B a O  (4) 

If we rewrite inequality (1) in the form: 

it is clear that the composite operator A - B  can have no negative eigenvalues. The best 
known application of this result is the variational principle, which may be written in 
operator form: 

H - Eo U 2 0. ( 5 )  
Here, H i s  the system HamiItonian, U the identity operator and Eo is the exact ground 
state energy. For operators with indefinite sign one can use a projection technique 
(Ltjwdin 1971) whereby the indefinite operator is projected onto a suitably chosen 
subspace in which the projected operator has definite sign. For example, if El  denotes 
the energy of the first excited state, one may project the operator H - E I U  onto a 
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subspace orthogonal to $o, the exact ground state eigenfunction, to obtain the non- 
negative projected operator (Weinhold 1970) 

Q o W -  El WQo 3 0. (6) 

Qi = Qo, QA = Q~ (7a) 

Qo= 1-[$0X$ol. (7b)  

The projection operator Qo has the usual properties: 

and its explicit form is clearly 

For any trial function fo, inequality (6) implies that 

where 

Io = (fOlHlf0). (8b) 

(Sa) contains Eckart's (1930) lower bound to the ground state overlap integral. 

2. The basic operator inequality 

A more general projection technique leads to the following inequality for the Hamilto- 
nian (Lawdin 1965): 

( H -  a n  W-' 3 I f > ( f l ~ -  a n  ulf>-'(fl. (9) 

Inequality (9) is valid for any an for a given n-dimensional orthonormal basis set f 
chosen such that the matrix ( f lHlf)  and the operator H both have the same number of 
eigenvalues below the parameter a,. Thus, we assume that 

I,-1 d a, d E, (10) 

where 

(hlHlh) = M i j  i , j = O , .  . . , n-1  (11) 

while, by the excited state variation theorem (Hylleraas and Undheim 1930, Mac- 
Donald 1933) we know that: 

i = 0, . . . , n - 1. (12) 

If we employ the first k functions of the n-dimensional basis, inequality (9) remains 
valid for each a k  chosen so as to satisfy 

Ei d Ii 

4 - 1  d a k  <&. (13) 

Thus, we have a set of operator inequalities 

(H-akIJ)-' (fXfIH-akU/f)-'(fl  k = 0, 1, . . . , n (14) 
which form the basis of our theory. 
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3. Overlapbounds 

The operator inequalities (14) are valid for any function in the common domain of the 
operators. For any eigenfunction of H we have: 

($,9l(H-akv)-'1@,9) ~ ( ( I G , 9 I f ) ( f l H - ( Y k U l f ) - ' ( f J ~ b ) .  (15) 

We now expand each function fi in terms of the complete set of eigenfunctions of H: 
a0 

fi = 1 aij(IGj i = 0, 1,  . . . , n - I 
j = O  

and obtain from (15) and (16): 

Consider now the set of m + 1 linear equations: 

1 m-l bf, k = 0,1,  . . . , m -- - E -  Eo -(Yk  i = O  I, - ( Y k  

in m unknowns bk.  The solution of any selected set of m linear equations chosen from 
these m + 1 equations (we have m + 1 sets in all) is given explicitly by: 

j # i  k Zs 

Combining (17) and (18) we obtain 

comprising m + 1 sets of linear inequalities. The solutions b; of the linear equations 
(18) are given explicitly by (19), while the overlap integrals 

a i =  l(fiI&)l* (21) 
remain to be determined. To this end, we define the quantities xi (s )  as: 

(22) 
2 2  x i ( s )  = aib-bib(s)  

and rewrite (20): 

In defining x i ( s )  we may drop the index p since our entire procedure is valid for any p. 
However, /3 will specify a particular solution of equations (19). 

In the following section we describe a general procedure for establishing the signs of 
some of the x i ( s ) .  This allows us to determine when a particular bb(s)  constitutes a 
bound to an individual a i .  For, whenever x i ( s )  is positive, then for any p :  

a& a b&) (lower bound) (24) 

a&< b&) (upper bound). (25) 

while for negative x i ( s ) ,  
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T,d=c=-:' 

4. Solution for a set of linear inequalities 

Cn-1 

- cn 

The set of inequalities (23) is similar to the classical linear programming problem (see, 
for example, Gass 1975). Our treatment differs from the conventional solution of the 
linear programmin problem in that we are satisfied if we can determine bounds to some 
of the variables (ai@). Consider a general set of linear inequalities: F 

AX60 (26) 
where 

The set of linear inequalities (26) is equivalent to a set of linear equations: 

h = - d  (28) 
where 

d =  

and every di is non-negative, but is otherwise unknown. We now assume the existence of 
a transformation TI which transforms A into nearly triangular form 

1 

(32) 

(33) 
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A transformation T which reduces the 2 X 2 matrix in (33) to triangular form is easily 
seen to be: 

:] * 

T = [  1 I 
-U n,n-l/Q I- 1,n- 1 

Then: 

where we require 

a;,n-1 
c n  -cn-1- 0. 

a n  - 1,n-1 

(34) 

This implies that we must have 

(37) QI,n-l 
aL1.n-1 

(since the magnitudes of c,, c n - ]  are unknown) and without loss of generality, we choose 

aI,n-l c 0, a;-l ,n-l  20 .  (38) 

GO 

The triangular matrix remaining after the application of this transformation is: 

d , n - 1  a n n  0 

where 

a:,=(l- Qn-l,nUI,n : 
;l) a;n = (1 -p)aI,. 

a n  - 1,n - 1 a n n  

(39) 

The sign of x, is now determined entirely by the sign of and is always opposite to it. 
Thus, once we have determined the sign of a:,,, we have a 'solution' for x,. From (40) it 
is clear that a;,, and a;,, have the same sign whenever p < 1, and have opposite signs 
when p > 1. In view of our choice of signs in (38), p is negative (and thus less than unity) 
whenever UI-~,~ and a;,, have the same sign. However, when UI-~,~ and a:,, have 
different signs, p is positive and we must examine its magnitude. We summarize the 
possible cases in table 1. (Here and in the following, the signs of the elements will be 
denoted + and -.) 

Table 1. Elements to determine the signs of xn and x , - ~ .  
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Cases 1 and 2 require no knowledge of the magnitudes of the individual elements, 
but still yield the sign of xn alone. In all the remaining cases, we require the magnitudes 
of all the elements of the 2 X 2 matrix in order to determine p. However, if p < 1 we not 
only determine the sign of x,  as before, but also find that the sign of xnVl is always 
negative. 

It is clear that to proceed further (i.e. to determine the signs of more than two of the 
xi) we shall require more detailed knowledge of the elements of the matrix A. Under 
certain restrictive conditions, it may be possible to deal with a 3 X 3 matrix equation in 
place of (33) and to determine the signs of three xi’s. In the present work, we do not 
seek a complete solution of inequalities (23) but find that the results summarized in 
table 1 enable us to obtain useful bounds for many cases of interest. 

5. Solution of the set of inequalities (23) 

Following the notation of the preceeding section, we rewrite our set of inequalities (23) 
in matrix form: 

A‘x(s) = -ds 
where now: 

and 

x(s) = 

(41) 

S 

(43) 

The rows of A are ordered according to increasing cyk, and the columns according to 
increasing 4 so that if j > i and I > k,  

U j - I J > O ,  (a1 - a k )  > 0. (44) 
This will be referred to as ‘normal’ ordering. The superscripts s in (42) indicate that the 
row containing a, is deleted from A and the element d, from d. The index s in (43) 
serves to denote this particular solution. 

Now consider: 



Linear inequalities and overlap bounds 1611 

We assume (cf (38) above) that 

< o  
I i  -01 

>o, 
l i - & k  

and obtain 
l - p  = - ( & l 7 & k ) ( 4 - I i )  

( I i  - & k ) '  

In cases of normal ordering and in view of the assumption of (46) it follows that 

(46) 

(47) 

(48) 
1 > O  

z j - & k  

so that (1 - p )  is necessarily positive. Thus the sign of xi depends only on the sign of 
(4 -a1) (case 1 or 3 in table 1). 

We have seen that assumption (46) is crucial to our development. However, it may 
happen (we give some examples in the next section) that (& - & k )  and (Ii - al)  are of the 
same sign. In that case, by interchanging the columns of the matrix in (45) (and, of 
course, the rows of the solution vector) we obtain 

and we may now proceed provided that: 

<o. 
I j  -a/ 

>o, 4 - & k  

Normal ordering together with the assumption of (50) now assures that 

and here, we obtain 

whose sign depends only on the sign of (Ii - & k ) .  Thus, the sign of xi  is determined in this 
case (case 2 or 4 in table 1). 

We have thus seen that each of the cases 1-4 may arise and a solution for at least one 
of x, and xi is obtained in each case. Cases 5 and 6 do not arise in our specific problem. 

Before proceeding, we sketch the reduction leading to the 2 X 2 matrix problem just 
solved. We consider the 3 x 3 problem 
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The transformation 

contains only positive elements (in the case of normal ordering) and reduces the matrix 
of (53) to the form 

1 II Ip -aq - Ii -aq '1 4 -aq 

This procedure can be generalized, and forms the justification of our treatment of the 
2 X 2 matrix problem only. 

6. An example 

To demonstrate the application of our procedure, we give an example of a 4 x 3 matrix 
A. It will be sufficient to give only the signs of the elements in the final triangular matrix 
but the rows and columns are indexed for clarity. We have here 

0 1 2  r+ + '1 0 

yielding four 3 X 3 matrices A', A', A* and A3. The transformations described in 8 5 now 
lead to the following forms: 

1 2 0  

A'+[: _I' xo(O> a 0 (case 2) 

3 

1 2 0  

A'+ 0 + + 2 xo(l) s 0 (case 1) i' + + l o  

(57) 
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0 2 1  

A'+ 0 + + q: 
0 1 2  

0 2 1  

A2+ 0 + + 1 [: : :I 
0 1 2  

A3+ r 0 + + +lo  + 1 

x l ( l )  3 0  (case 2) 

x,(2) s 0 (case 4) 

~ ~ ( 3 )  d 0 (case 1). 

(596) 

Lo 0 +] 2 

These results are evidently quite general and enable us to conclude that regardless of 
the dimension of the original A (which reflects the size of the basis set employed in (17)) 
we shall always have: 

Xs-l(S) s 0, X s ( S ) S O  (all s). (61) 

7. Results 

From (61), we have quite generally: 

and it remains to examine the properties of the bounds b:-l,P(s) and b&). The general 
expression of these is given by equation (19). 

7.1. Upper bounds 

We have explicitly 

k # s - I  
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and note that quite generally 

(65) (I& - E,)(I,--l - a k  + I )  = - ( a k  + I  - 4 )(LI - E,) 
(I& -Is-1)(E&9 - a k + l )  (Ll -4) (~t+l -E, ) ’  

Now from (13), we see that no E, or I,-l can lie in the interval (Ik,ak+1) and 
>E, each term in the product 

(64) exceeds unity unless Ik and lie in the interval (Ep, I,-1). Such terms will be set 
equal to unity by choosing 

- I k )  a 0. It thus follows from (65) that when 

% + I  + 4. (66) 

Also, when /3 < s - 1 the factor involving a0 is greater than unity, and may be set equal 
to unity by choosing 

a0 + -W. (67) 

The optimal choice of all the remaining a’s is seen to be given by 

and we obtain the upper bound 

When p =s-1  every term of (64) exceeds unity and the bound is trivial. When 
Is-1 <E,, each term in product (64) exceeds unity when Ik and lie in the interval 
(E,, Is-.l). Thus, we obtain in this case 

(p > s  - 1). (I& -EpMs-1 -Ek+l) 
E, -Eo k = O  (I& - - L l ) ( q 9  -&+A 

m-1 n 2 Is-l-Eo 
as-1,ps 

k f s - 1 ,. ... , - 1 

7.2. Lower bounds 

Here, it is convenient to rewrite (19) in the form: 

k f s  

where (I, -Is) is always positive and none of the Is can occur in any interval (ak, I&) (cf 
(13) above). Thus, each term of the product in (71) is positive except when E, = E&. 
This single negative term clearly cannot occur when E, > Z, but in that case, the factor 
(I,,, - E p )  makes the bound trivial. On the other hand, when I, >EB, the bound is again 
trivial except when E, = E,. In this case, we obtain the optimal lower bound (ak + Ek as 
before) 

k f s  
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8. Discussion and conclusions 

In this paper, we have been able to derive a non-trivial bound to every overlap integral 
a,@. The lower bound (72) has been given previously by Weinberger (1960) and has 
been widely used. The upper bounds (70) in the general case p = s (all s) and when 
s = m (p 3 m) have also been derived by Cohen and Feldmann (1976). The upper 
bound (69) has not appeared elsewhere. 

Both the lower bound (72) and the upper bound (70) are ‘improvable’ in the sense 
that they are refined by increasing the size of the basis set employed, (72) universally 
and (70) provided m >p. On the other hand, the upper bound (69) is not improvable, 
but is attained with a minimal basis set. In this case, the number of products appearing 
in the bound to as2-1,~ is precisely (s - 1 -p) .  

The intrinsic interest in these bounds is perhaps of less importance than the 
techniques developed here in obtaining them. We believe that our general method for 
solving sets of inequalities will prove to have far wider application. 
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